Optimal Matching Forests and Valuated Delta-Matroids

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Matching Forests and Valuated Delta-Matroids

The matching forest problem in mixed graphs is a common generalization of the matching problem in undirected graphs and the branching problem in directed graphs. Giles presented an O(nm)-time algorithm for finding a maximum-weight matching forest, where n is the number of vertices and m is that of edges, and a linear system describing the matching forest polytope. Later, Schrijver proved total ...

متن کامل

On Exchange Axioms for Valuated Matroids and Valuated Delta-Matroids

Two further equivalent axioms are given for valuations of a matroid. Let M = (V,B) be a matroid on a finite set V with the family of bases B. For ω : B → R the following three conditions are equivalent: (V1) ∀B,B′ ∈ B, ∀u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V2) ∀B,B′ ∈ B with B 6= B′, ∃u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V3) ∀B,B′ ∈ B, ∀...

متن کامل

Isotropical linear spaces and valuated Delta-matroids

The spinor variety is cut out by the quadratic Wick relations among the principal Pfaffians of an n×n skewsymmetric matrix. Its points correspond to n-dimensional isotropic subspaces of a 2n-dimensional vector space. In this paper we tropicalize this picture, and we develop a combinatorial theory of tropical Wick vectors and tropical linear spaces that are tropically isotropic. We characterize ...

متن کامل

Two Algorithms for Valuated ∆-matroids

Two algorithms are proposed for computing the maximum degree of a principal minor of specified order of a skew-symmetric rational function matrix. The algorithms are developed in the framework of valuated ∆matroid of Dress and Wenzel, and are valid also for valuated ∆-matroids in general.

متن کامل

Matching, matroids, and extensions

Perhaps the two most fundamental well-solved models in combinatorial optimization are the optimal matching problem and the optimal matroid intersection problem. We review the basic results for both, and describe some more recent advances. Then we discuss extensions of these models, in particular, two recent ones—jump systems and path-matchings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2014

ISSN: 0895-4801,1095-7146

DOI: 10.1137/110827661